9) Energy use in residential housing, a comparison of insulating concrete form and wood frame walls (USA, 2000)

ohn Gajda, Martha VanGeem – Construction Technology Laboratories Inc, Skokie

ABSTRACT: A typical 228-square-meter (2,450-square-foot) house with a contemporary design was
modeled for energy consumption in five locations. Locations were selected to represent a range of climates across the United States. Energy simulation software utilizing the DOE 2.1E calculation engine was used to perform the modeling.
In each location, three variations of the house were modeled. The first variation utilized conventional wood framed exterior walls constructed with typical materials. The second variation utilized insulating concrete form (ICF) walls. The third variation had non-mass exterior walls that met minimum energy code requirements. For all variations, all other assemblies such as the roof, floors, windows, and interior partitions were identical. In all locations, the house variations were insulated to meet the minimum levels required in the 1998 International Energy Conservation Code (IECC).
Due to the inherent insulating properties of the ICFs, total energy use (including heating and cooling, cooking, laundry, and other occupant energy) for houses with ICF walls ranged from 8% to 19% below that of the houses with walls that met IECC requirements. Houses with wood frame walls constructed with standard materials also showed total energy saving over that of houses with walls that met IECC requirements. In all locations, houses with ICF walls had total energy requirements that ranged from 5% to 9% below those of houses with wood frame walls.
Houses with ICF walls also showed additional savings resulting from a reduction in the required heating, ventilation, and cooling (HVAC) system capacity. Total system capacity for houses with ICF walls ranged from 16% to 30% less than that of houses with walls meeting IECC requirements and 14% to 21% less than that of houses with wood frame walls.